
Alexey Elkin  

 

 

 

 

 

 

 

 

 

 

Investigating the Rate of Protostar Formation with an 

N-Body Simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Alexey Elkin  

 

 

Investigating the rate of Protostar formation with an N-body Simulation 

The purpose of this investigation is to model the coalescence of particles forming a Protostar and to find factors affecting the rate 

of coalescence. This will be done using an “N-Body Simulation”, a computer program that models the interactions of particles 

while under the influence of gravity. I wrote the program in Java, using JavaFX to create the GUI. The program code and 

development timeline are all hosted on Github; there is a link at the end of the document. 

In the N-body simulation, each particle has the following attributes: mass, colour, location, velocity, and temperature (although 

the latter isn’t relevant in the investigation). Mass and temperature are stored as floating-point numbers, but location and 

velocity are stored as 2D Vectors. All the other properties of the particle (such as the radius) are derived from these attributes. 

The relationship between the rate of coalescence and 4 factors is analysed. These factors are:  particle density, particle mass, 

initial particle speed, and particle distribution shape.  

 
private double mass; 
private Color color; 
private Point2D location; 
private Point2D velocity; 
private float temperature; 
 
public Particle(double mass, Color color, Point2D location) { 
    this.mass = mass; 
    this.color = color; 
    this.location = location; 
    this.velocity = new Point2D(0, 0); 
    this.temperature = 0; // The initial temperature of each particle is zero 
} 
 

 

The Physics Engine 

“Newton's Law of Universal Gravitation states that every particle attracts every other particle 

in the universe with a force which is directly proportional to the product of their masses 

and inversely proportional to the square of the distance between their centres" (Wikipedia 

Contributors, 2020a) 

 
 
 

if(p.getParticle(i) != p.getParticle(j)) { 
 
    force = p.getGravConstant() * (p.getParticle(i).getMass() * p.getParticle(j).getMass() / 
            (Math.pow(p.getParticle(j).getLocation().distance(p.getParticle(i).getLocation()), 2))); 
 
    double alpha = Math.atan2(xDifference, yDifference);  
    double angle = Math.toDegrees(alpha); 
 
    xF = force * Math.sin(alpha); 
    yF = force * Math.cos(alpha); 
 
    p.getParticle(j).accelerate(new Point2D(xF/p.getParticle(j).getMass(), yF/p.getParticle(j).getMass())); 
 
 
} 
 

The gravitational force acting on the particles is initially calculated using Newton’s law of universal gravitation. The angle 

between each particle in series is then calculated using the Java.Math atan2() function, which returns the angle between the 

particles in radians. The total force acting on the particle is then resolved for each component using the cosine rule.  The variables 

xF and yF represent the X and Y components of the gravitational force.  

The gravitational force acting on a particle is calculated by multiplying the product of the masses of the two particles by the 

gravitational constant, and then dividing by the square of the distance between the particles. 

https://en.wikipedia.org/wiki/Particle
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Proportionality_(mathematics)#Direct_proportionality
https://en.wikipedia.org/wiki/Proportionality_(mathematics)#Inverse_proportionality
https://camo.githubusercontent.com/894300193b9aa0d8c50ec442343bc4edcecebc9f/687474703a2f2f7777772e616c65786579656c6b696e2e636f6d2f696d616765732f677261766974792e676966


Alexey Elkin  

 

 

“Newton's Second Law - In an inertial frame of reference, the vector sum of the forces F on an 

object is equal to the mass m of that object multiplied by the acceleration a of the object: F = ma. (It 

is assumed here that the mass m is constant) (Wikipedia Contributors, 2020b) 

 
p.getParticle(j).accelerate(new Point2D(xF/p.getParticle(j).getMass(), yF/p.getParticle(j).getMass())); 

 
 

Finally, the particle is accelerated following Newton’s 2nd Law. The acceleration is equal to the Force / Mass 

 

A Perfectly Inelastic Collision occurs when the maximum amount 

of kinetic energy of a system is lost. In a perfectly inelastic collision, 

i.e., a zero coefficient of restitution, the colliding particles stick 

together. In such a collision, kinetic energy is lost by bonding the 

two bodies together (Wikipedia Contributors, 2020c) 

 
if ((p.getParticle(j).getLocation().distance(p.getParticle(i).getLocation())) 
        < (p.getParticle(j).getRealDimensions() / 2 + p.getParticle(i).getRealDimensions() / 2) 
        && p.getParticle(i) != p.getParticle(j)) { 
 
    if (p.getParticle(j).getMass() > p.getParticle(i).getMass()) { 
        //Larger particle changes its trajectory according to Newton's Third Law 
        p.getParticle(j).setVelocity( 
                new Point2D( 
                        (p.getParticle(j).getMass() * p.getParticle(j).getVelocity().getX() + 
                                p.getParticle(i).getMass() * p.getParticle(i).getVelocity().getX()) / 
                                (p.getParticle(j).getMass() + p.getParticle(i).getMass()), 
 
                        (p.getParticle(j).getMass() * p.getParticle(j).getVelocity().getY() + 
                                p.getParticle(i).getMass() * p.getParticle(i).getVelocity().getY()) / 
                                (p.getParticle(j).getMass() + p.getParticle(i).getMass()) 
                ) 
        ); 
        //Larger particle absorbs smaller particle 
        double initialKineticEnergy = p.getParticle(i).getKE() + p.getParticle(j).getKE(); 
 
        p.getParticle(j).addMass(p.getParticle(i).getMass()); 
 
        double finalKineticEnergy = p.getParticle(j).getKE(); 
        p.getParticle(j).incTemperature((initialKineticEnergy-finalKineticEnergy)/(p.getParticle(j).getMass()*1000)); 
 
        p.destroyParticle(i); 
 
    } else { 
 
        //Larger particle changes its trajectory according to Newton's Third Law 
        p.getParticle(i).setVelocity( 
                new Point2D( 
                        (p.getParticle(j).getMass() * p.getParticle(j).getVelocity().getX() + 
                                p.getParticle(i).getMass() * p.getParticle(i).getVelocity().getX()) / 
                                (p.getParticle(i).getMass() + p.getParticle(j).getMass()), 
 
                        (p.getParticle(j).getMass() * p.getParticle(j).getVelocity().getY() + 
                                p.getParticle(i).getMass() * p.getParticle(i).getVelocity().getY()) / 
                                (p.getParticle(i).getMass() + p.getParticle(j).getMass()) 
                ) 
        ); 
        //Larger particle absorbs smaller particle 
        double initialKineticEnergy = p.getParticle(i).getKE() + p.getParticle(j).getKE(); 
 
        p.getParticle(i).addMass(p.getParticle(j).getMass()); 
 
        double finalKineticEnergy = p.getParticle(i).getKE(); 
        p.getParticle(i).incTemperature((initialKineticEnergy-finalKineticEnergy)/(p.getParticle(i).getMass()*1000)); 
 
        p.destroyParticle(j); 
    } 
} 

https://en.wikipedia.org/wiki/Vector_sum
https://en.wikipedia.org/wiki/Forces
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Coefficient_of_restitution
https://camo.githubusercontent.com/414ac74f809e303187a03e353a1ef85212f10a46/687474703a2f2f7777772e616c65786579656c6b696e2e636f6d2f696d616765732f666f7263652e676966
https://camo.githubusercontent.com/a0a92cf8fbda2019fbf06dcd656bfaa942e0b71e/687474703a2f2f7777772e616c65786579656c6b696e2e636f6d2f696d616765732f6d6f6d656e742e676966
https://camo.githubusercontent.com/ba145a5f327553a39d09d58ad28a9b40e064cf03/687474703a2f2f7777772e616c65786579656c6b696e2e636f6d2f696d616765732f6d6f6d656e74322e676966


Alexey Elkin  

 

 

The collision detection is done by calculating the distance between two particles and comparing it to the radii of the two particles. 

If the distance between two particles is smaller than the sum of their radii, a collision has occurred. Once this is established, the 

larger particle “absorbs” the smaller particle in a perfectly inelastic collision. (The mass of the smaller particle is added to the 

mass of the larger particle, and the smaller particle is deleted) 

After the particles have coalesced, the velocity of the larger particle changes, because it has been altered by the impact of the 

smaller particle in accordance to Newton’s 1st Law. The new velocity of the larger particle is calculated by adding the product of 

its mass and velocity to the product of the mass of the smaller particle and its respective velocity, and then dividing by the sum of 

the masses of the two particles. This calculation is performed twice – once for the X and Y components of velocity. 

The Kinetic Energy lost is then converted into Thermal Energy. The conversion is done with Q = m · c · ΔT, but the heat 

capacity of each particle is assumed to be 1, so it is ignored in the calculation. 

 

The Experiments 

Control Experiment 

Particle Number  Particle Mass (Kg) Initial Speed (ms-1) Particle Distribution Frames Recorded 

100 2-200 0 Circular 100,000 (x100) 

 

  

  

The pictures above show the particles converging to the centre and coalescing as time progresses. The pictures are ordered 

from left to right, and from top to bottom. The green mesh represents the forces of gravity acting between the particles. It 

is useful in helping to visualize the approximate distribution of the particles at a specific time in the experiment. 

In this experiment, default control conditions for the following experiments were established. The experiment was repeated 100 

times, and mean values were taken for the data points to smooth out the curve on the graph and reduce the influence of anomalous 

data points. A graph of particle number VS frames was recorded. The particle simulation was assumed to be a perfectly 

isolated system with no external forces acting on the particles. 



Alexey Elkin  

 

 

In all the experiments, 1 frame corresponds to 14,983,338,528 seconds, or approximately 173,418 years. This means that for an 

experiment lasting 100,000 frames, about 18 billion years would have elapsed. However, the vast majority of the particles 

coalesce by about 10,000 frames. 

The speed of this coalescence is what I intend to investigate. 

 

 

As the data above demonstrates, the rate of particle collisions decreases as the simulation progresses. The relationship between the 

number of particles and time (frames) can be modelled relatively well with a logarithmic equation:  -13.35ln(x) + 158.93 , with   

R2 = 0.82 indicating strong correlation. 

In the experiment, the particles converged towards the centre of gravity at an increasing velocity. As they approached closer to the 

centre, they coalesced to form one very large particle. Some of the particles which were generated at the far edges of the 

distribution missed the large mass in the centre, travelling past it. However, with time, they began to return and impact it. By 

75,000 frames, there were still about 18 particles remaining. These particles have not coalesced because they have missed other 

particles on their first approach to the centre and were ejected far off into space. Extrapolation of the data suggest that these 

particles could take up to 150,000 frames to return to the centre. 

 

 

 

 

 

 

 

 

y = -13.35ln(x) + 158.93
R² = 0.8212

0

20

40

60

80

100

120

140

160

180

0 10000 20000 30000 40000 50000 60000 70000 80000

P
ar

ti
cl

es

Frames

Control Experiment



Alexey Elkin  

 

 

Influence of Particle Distribution Density on Coalescence Speed 

Particle Number  Particle Mass (Kg) Initial Speed (ms-1) Particle Distribution Frames Recorded 

100-500 (+50 / inc)  2-200 0 Circular 100,000 (x10) 

 

  

  

 

 

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ar

ti
cl

e 
N

u
m

b
er

Frames

Influence of Initial Particle Velocity on Coelescense Speed

Particles_1 Particles_2 Particles_3 Particles_4 Particles_5

Particles_6 Particles_7 Particles_8 Particles_9 Particles_10



Alexey Elkin  

 

 

 

 

The pictures on the left show the start of 4 consecutive experiments. Initially, the particle density is relatively low. 

However, further experiments have a much larger particle density – highlighting the circular distribution of the particles. 

 

The purpose of this experiment was to find out how particle density affects the speed at which the particles coalesce. The 

experiment was performed 10 times, each time with an increasing number of particles (in steps of +50). The first experiment 

had 50 particles, the second – 100, the third – 150, and so on. 

 

The graph demonstrates that there is a strong correlation and a causal relationship between the initial number of particles and 

the time it takes for them to coalesce. It can clearly be seen that the curve with the most initial particles decreases the 

quickest. After about 8000 frames most of the particles have coalesced, and all the curves flatlined. Although the number of 

particles was recorded to 100,000 frames, the graph only shows 10,000. This was done because the curves remain almost 

stationary for the next 90,000 frames. 

 

Hypothesis: There is a positive correlation between the particle density and the rate of coalescence. 

 

Conclusion: There is a very strong positive correlation and causal relationship between the particle density and the rate of 

particle coalescence. (Hypothesis confirmed) 

 

 

It should be noted that in this experiment CPU load increased dramatically as the number of particles in the simulation increased. 

When the number of particles was 50, the average FPS was around 2000. However, as the number of particles increased, the FPS 

dropped to less than 1 frame per second. This is due to the algorithmic complexity being 𝑂(𝑛)2 - If the number of particles in the 

simulation doubles – the CPU load quadruples, etc...  

Therefore, it was unsurprising that this experiment took the longest to run - sixteen and a half hours. 

 

Influence of Initial Particle Speed on Coalescence Speed 

Particle Number  Particle Mass (Kg) Initial Speed (ms-1) Particle Distribution Frames Recorded 

100 2-200 6.68E-11 - 6.68E-10 Circular 100,000 (x10) 

 

  

  



Alexey Elkin  

 

 

 

 

The images show the particles spreading out from the centre of the screen, as their initial velocity carries them further and 

further from the centre of mass. 

The purpose of this experiment was to find out how the initial speed of the particles affected the rate at which they coalesce. The 

simulation was run in conditions identical to those in the control experiment, the only difference being that the particles had a 

non-zero initial velocity. 

The graph above demonstrates that there is a relatively strong negative correlation between the initial particle speed and the rate of 

coalescence, R2=0.7. The graph can be approximated with a curve of best fit with equation y = 10-6x + 0.008x -5.8929. However, 

and even better approximation is y = -6E-14x4 + 1E-09x3 - 7E-06x2 + 0.0214x - 14.759 

The graph shows that particles with a higher initial velocity take longer to coalesce. This can be explained by the fact that 

collisions are less likely when the particles start with an initial velocity. The gravitational force acting on the particles decreases 

because the density of the particle distribution decreases throughout the experiment - the particles spread out as their initial 

velocity pushes them progressively further away from each other, and the centre of gravity. The images captured in this 

experiment demonstrate the way that the particles spread out, filling the entire screen. 

 

Hypothesis: There is a positive correlation between the initial particle velocity and the time required for the number of particles 

in the simulation to halve. 

Conclusion: There is a positive correlation between the initial particle velocity and the time required for the number of particles 

in the simulation to halve (Hypothesis confirmed) 

 

 

 

 

 

y = -1E-06x2 + 0.008x - 5.8929
R² = 0.9698

y = -6E-14x4 + 1E-09x3 - 7E-06x2 + 0.0214x - 14.759
R² = 0.9918

R² = 0.7008

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000

In
it

ia
l S

p
ee

d
 (

6
.6

8
 x

 1
0

-1
1 )

Time (Frames) Taken for Particle Number to halve

Influence of Initial Particle Velocity on Coelescense Speed



Alexey Elkin  

 

 

Influence of Particle Mass on Coalescence Speed 

Particle Number  Particle Mass (Kg) Initial Speed (ms-1) Particle Distribution Frames Recorded 

100 100-1000 0 Circular 50,000 (x9) 

 

  

  

 

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000

P
ar

ti
cl

e 
N

u
m

b
er

Frames

Influence of Particle Masses on Coelescence Speed

Particles_31 Particles_32 Particles_33 Particles_34 Particles_35

Particles_36 Particles_37 Particles_38 Particles_39



Alexey Elkin  

 

 

The pictures show the simulation running with particles of different masses.  

The purpose of this experiment is to find out the relationship between the mass of the particles and the rate at which they coalesce. 

The experiment was run 10 times, with increasing particle masses (from 10-1000kg, with increments of 100kg) 

The graph demonstrates that there is a clear positive correlation between the mass of the particles and the rate at which they 

coalesce – as the mass of the particles increases, the time taken for them to coalesce decreases.  

This is because Newton’s Law of Universal Gravitation states that the gravitational force between two particles can be represented 

with 𝐹 = 𝐺
𝑚1𝑚1

𝑟2
 . Since mass of the particles is directly proportional to the gravitational force acting on them, larger particles will 

experience a larger gravitational force acting on them. 

However, Newton’s Second law states that 𝐹 = 𝑚𝑎. Therefore, the mass of the particles is inversely proportional to their 

acceleration due to gravity. 

Nevertheless, the overall force acting on two particles with an increased mass still increases, if the fact that there are multiple 

particles is taken into consideration. 

 

Hypothesis: There is a positive correlation between the mass of the particles and the rate of coalescence. 

Conclusion: There is a positive correlation between the mass of the particles and the rate of coalescence. (Hypothesis confirmed) 

 

 

Influence of Distribution Shape on Coalescence Speed 

Particle Number  Particle Mass (Kg) Initial Speed (ms-1) Particle Distribution Frames Recorded 

100 100-1000 0 Circular, Square, 

Rectangular 

50,000 (x30) 

 

  

  



Alexey Elkin  

 

 

 

The pictures above show the simulation running with different particle distribution shapes. In the first experiment, the 

particles are distributed in a circle. In the second, they are distributed in a square, and in the final experiment they are 

distributed in a rectangle (with sides 2:1). All of the distributions had the same area. 

The purpose of the experiment is to identify the relationship between the shape of particle distribution and the rate at which the 

particles coalesce. The data for each of the 3 experiments was recorded 10 times, and the average was taken. 

The graph shows that the particles in the circular distribution coalesced first, followed by the particles in the square and 

rectangular distributions. 

This occurred because the particles in a circular distribution are evenly distributed around the centre of mass, whereas the particles 

in the square and rectangular distributions have some particles much further from the centre of mass than others. When these 

particles are pulled into the centre by gravity, they can “slingshot” past the centre and eject far off into space. This effect increases 

the time taken for all the particles to coalesce. 

Hypothesis: The particles in the circular distribution will coalesce the quickest, followed by the square, and then the rectangular 

distributions. 

Conclusion: The particles in the circular distribution will coalesce the quickest, followed by the square, and then the rectangular 

distributions. However, the difference in the rate of coalescence does not differ by a significant amount when the area of the 

distribution remains the same. 

 

Overall Conclusion 

After these experiments were performed, the following conclusions could be drawn: 

▪ There is a positive correlation between the initial particle density and the rate of coalescence 

▪ There is a negative correlation between the initial particle speed and the rate of coalescence 

▪ There is a positive correlation between the mass of the particles and the rate of coalescence 

▪ The more uniformly the particles are distributed around the centre, the faster the rate of coalescence. 

 

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
ar

ti
cl

e 
N

u
m

b
er

Frames

Influence of Particle Distribution Shape on Coelescence Speed

Square Distribution Circular Distribution Rectangular Distribution



Alexey Elkin  

 

 

Selecting Lines of Best Fit 

The lines of best fit were selected by assigning different regression models to the data (polynomial, exponential, quadratic, linear, 

etc…) and assessing the R2 values. The line which produced the “best fit” (the lowest R2 value) was chosen as the model or the 

data.  

Experiment Limitations 

Although the simulation used real physics laws, there were certain limitations that impeded the accuracy with which the 

simulation could be run. For example: the whole simulation was performed in 2D, and the FPS was dependent on thermal 

throttling caused by overheating. This meant that later experiments performed slightly slower than earlier ones because the 

computer I was using was purposefully lowering its processor frequency in order to protect components from overheating – 

slowing down the operation of the simulation. 

There were also certain limitation to do with the processing power available. I used a Dell XPS 15 7590 with an Intel i7-9750H 

processor and 32GB of RAM to run all the experiments. However, only one processor core out of 6 was used to run the 

simulation, so full advantage of the processing power available was not taken. Theoretically, the application would have run much 

quicker on the GPU. However, this would have exacerbated the thermal issues – sacrificing reliability. Therefore, the limiting 

factor of the speed of operation of the simulation was the CPU temperature. 

 

Safety and Risks 

▪ PTSD from deleting half my program code by accident. 

 

Code Access 

The complete source code of the N-Body Simulation can be found on my GitHub page. 

 

https://github.com/elkinal/Particles 

https://github.com/elkinal/Particles_2.0 (Improved Version) 

References 

Wikipedia Contributors (2020a). Newton’s laws of motion. [online] Wikipedia. Available at: 

https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion 

Wikipedia. (2020b). Newton. [online] Available at: https://en.wikipedia.org/wiki/Newton. 

Wikipedia. (2020c). Inelastic collision. [online] Available at:  

https://en.wikipedia.org/wiki/Inelastic_collision [Accessed 10 May 2020]. 

https://github.com/elkinal/Particles
https://github.com/elkinal/Particles_2.0
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
https://en.wikipedia.org/wiki/Newton

